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ABSTRACT: This paper uses plant-level EPA and Census data to examine spatial fac-
tors affecting environmental performance, as measured by air pollutant emissions and
regulatory compliance. We find significant effects for compliance, but not for emissions.
Compliance is positively spatially correlated, partly explained by spatial correlations in
observed plant characteristics, suggesting influences of industry agglomeration. The use
of spatial econometric methods shows only small effects of spatially lagged compliance
status, and does not greatly change the estimated contributions of other spatially explicit
factors. Regulatory activity has the expected effect of increasing environmental perfor-
mance, both at the inspected plant and at neighboring plants, but only for plants in the
same state, demonstrating the importance of jurisdictional boundaries.

1. INTRODUCTION

This paper examines the determinants of environmental performance at a
sample of U.S. manufacturing plants, concentrating especially on spatial fac-
tors. Differences in environmental performance across plants could be driven by
differences in plant-specific characteristics (age, size, production technology),
firm-specific characteristics (size, profitability, corporate culture), or external
pressures (regulatory stringency, enforcement intensity, or lobbying pressures
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from neighborhood environmental groups). Environmental performance could
be spatially correlated, with nearby plants having similar performance, if it
is driven by location-specific external pressures: plants in the same state fac-
ing the same regulatory agency or plants in the same neighborhood facing the
same environmental group. Spatial correlation could also result from endoge-
nous interactions in plant behavior, such as “demonstration effects,” where one
plant’s high compliance rate pressures neighboring plants to raise their own
compliance rates.

Spatial correlation can be important in its own right, if it results in the
concentration of poor performance among sets of nearby plants, creating local
“hot spots.” If hot spots are sufficiently damaging, social welfare might be im-
proved by negative spatial correlations, where poor performers are balanced
out by good performers in the same neighborhood. A less optimistic view of reg-
ulatory policy would point to concerns about environmental justice, with plants
in less politically connected neighborhoods receiving less regulatory attention,
resulting in local concentrations of poor environmental performance.

Spatial correlation could also bias the results of studies that fail to con-
trol for the spatial effects. For example, industry agglomeration could generate
a “selection effect,” whereby plants that cluster together for production-side
reasons also tend to have similar environmental performance. These local sim-
ilarities in performance could be mistakenly identified as the “treatment effect”
of a location-specific factor such as regulatory stringency. Spatial econometric
analyses can avoid such biases by testing for correlations in the explanatory
variables and by controlling for the impact of neighboring plants’ behavior.

There exists a substantial body of research examining the determinants
of environmental performance, as measured by air pollution emissions and
compliance. Compliance status is examined by Gray and Deily (1996), Gray
and Shadbegian (2005), and Nadeau (1997), while emissions have been stud-
ied by researchers including Kahn (1999), Shadbegian and Gray (2003), and
Gray and Shadbegian (2004).1 This research most often focuses on specific de-
terrence, which is the direct impact of enforcement activity, i.e., the impact of
an inspection on future compliance at the plant being inspected. In contrast,
fewer studies have examined general deterrence, which occurs when an inspec-
tion affects compliance at other plants, by raising those plants’ expectations of
the amount of enforcement they will face in the future.

Spatial factors play a role in many of the variables used in these studies,
although none have used spatial econometric models. The measures of regu-
latory enforcement are inherently spatial: differences across plants in regula-
tory activity depend on differences in enforcement stringency across regula-
tory agencies and nearby plants tend to face the same regulator. Jurisdictional
boundaries provide another potentially important spatial factor connected with

1Studies on water pollution include Magat and Viscusi (1990), Laplante and Rilstone (1996),
Helland (1998), Shimshack and Ward (2005), Sigman (2002, 2004), and Gray and Shadbegian
(2004).
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regulation, if regulators pay less attention to plants near the border, whose
pollution primarily affects people in the next jurisdiction. The importance of
these border effects is examined by Kahn (1999), Sigman (2002, 2004), and
Helland (2003). Finally, the political clout of the population surrounding the
plant may influence regulatory activity; measures of political activity and pop-
ulation demographics have been examined by Hamilton (1993, 1995), Arora
and Cason (1999), and Gray and Shadbegian (2004).

Our analysis incorporates spatially based information in three new ways.
First, in addition to the usual demographic and political information about
those living near the plant, we construct a measure of regulatory activity at
nearby plants that distinguishes between plants in the same state and plants
in different states, allowing us to test for general deterrence effects and to
test whether those deterrence effects end at jurisdictional borders. Second, we
test for spatial correlations in the explanatory variables, in the performance
measures, and in the residuals from non-spatial models. Comparing the mag-
nitudes of these correlations allows us to see whether spatial correlations in
plant characteristics (possibly driven by industry-agglomeration effects) con-
tribute to correlations in environmental performance. Finally, we use spatial
econometric techniques to allow explicitly for correlations with the performance
of nearby plants, to see whether (and how much) omitted spatial effects bias
the results of non-spatial models.

Our results indicate a significant role for spatial factors in environmental
performance, without seriously biasing the effects of other factors. Compliance
status is positively correlated at nearby plants in the same state, but this cor-
relation does not carry across state borders. The residuals from a compliance
model show weaker spatial correlations, so spatial correlations in explanatory
variables can explain a sizable part (but not all) of the correlation in compli-
ance across nearby plants. In spatial econometric models we find that spatially
lagged compliance terms are small and usually not significant, confirming that
the explanatory variables capture most of the spatial effects. Our analyses of
air pollution emissions, for both conventional and toxic pollutants, show no
evidence of spatial correlations — in fact few variables in our model show sig-
nificant impacts on air pollutant emissions, perhaps due to the smaller sample
sizes involved or due to the heterogeneity of the plants included in our sample
(in order to obtain sufficient numbers of nearby plants for the spatial economet-
ric analysis, we include all manufacturing plants, not just those from a single
industry as most prior research has done).

Much of the explanatory power of the compliance models comes from
plant-specific characteristics, with larger, older, and more pollution-abatement-
intensive plants having lower compliance rates. Local demographic character-
istics matter — having more elderly or minority residents nearby is associated
with greater compliance — but political activity has little impact. We find the ex-
pected effects of regulatory enforcement (although not always significant): more
inspections at the plant, at nearby plants, and at all other plants in the state,
are associated with greater compliance. The latter two results demonstrate the
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importance of general deterrence effects. Inspections at nearby plants in other
states do not seem to increase compliance, showing a significantly different ef-
fect from inspections at nearby plants in the same state, and reinforcing the
message that jurisdictional borders matter.

Section 2 presents a model of spatial correlations in environmental per-
formance. Section 3 describes the data used in the analysis, including possible
spatial characteristics of the regulatory variables. Section 4 discusses issues
relating to spatial econometrics that are important for estimating our models.
Section 5 presents the results, and Section 6 concludes.

2. SPATIAL CORRELATIONS IN ENVIRONMENTAL PERFORMANCE

As Manski (2000) observes, it can be difficult to distinguish among three
reasons for correlations in outcomes within a group: endogenous interactions,
contextual interactions, and correlated effects. In our case, these three rea-
sons correspond to a plant’s environmental performance being influenced by
the actual performance of nearby plants, being influenced by other (exoge-
nous) characteristics of nearby plants, and only appearing to be influenced
by nearby plants’ performance — the latter case arising if neighboring plants
share similar unmeasured characteristics influencing their performance, lead-
ing to similarities in performance across neighboring plants without a direct
causal link. All three cases could result in positive spatial correlations in per-
formance, and the spatial econometric techniques we use in this research help
focus our attention on the different ways in which neighboring plants are
related.

To better understand the reasons for such spatial correlations, we begin
with a basic model of environmental performance. Consider an individual man-
ufacturing plant2 seeking to maximize profits while facing benefits and costs
associated with a given level of environmental performance (EP). We abstract
from the production side of the plant’s decision, represented in Equation (1) by
a base level of profits �0, and focus on the relative magnitudes of the compli-
ance costs associated with achieving a particular level of EP and the penalty
from regulatory agencies predicted for a plant with that level of EP

�(EP, Xcc, Xpen) = �0 − CompCost(EP, Xcc) − Penalty(EP, Xpen)(1)

with ∂CompCost/∂EP > 0 and ∂Penalty/∂EP < 0. A profit-maximizing plant
will balance the marginal costs of improved performance with the marginal
benefits — recognizing that the benefits of increased EP come in the form of
lower penalties

∂CompCost/∂EP = −∂ Penalty/∂EP(2)

2We speak of profit-maximizing plants, rather than firms, since all of our analysis is done at
the plant level.
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FIGURE 1: Impact of Shifts in Xcc, Xpen on Optimal Performance EP∗.

Xcc and Xpen in Equation (1) are characteristics of the plant or the
plant’s environment that increase the marginal costs (or marginal penal-
ties) associated with any given level of EP, so ∂2CompCost/∂EP∂Xcc >0 and
∂2Penalty/∂EP∂Xpen < 0. Xcc variables include plant characteristics that af-
fect the costs of achieving a given level of EP (its size, age, production technology,
managerial ability, etc); Xpen variables include the expected level of environ-
mental regulatory activity faced by the plant (raising the likelihood that a
poorly performing plant will be caught), and the stringency of that regulation
(raising the dollar penalty that will be imposed if the plant is caught). Not
all Xpen variables need to be tied to characteristics of the regulatory agency;
the demographics and politics of the surrounding population may also matter.
Plants surrounded by politically active and environmentally concerned neigh-
bors could face a higher Xpen due to those neighbors’ ability to intervene in the
environmental permitting process to punish plants with low EP.

Figure 1 shows the impact of changes in Xcc and Xpen on the optimal
level of performance, EP∗, working through Equation (2). If cost-related factors
increase from X0cc to X1cc then EP∗ decreases from EP∗

0 to EP∗
1. On the other

hand, if benefit-related factors increase from X0pen to X2pen then EP∗ increases
from EP∗

0 to EP∗
2. Note that a single factor could affect both Xcc and Xpen.
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For example, if regulations are grandfathered, older plants may face less strict
regulations (Xpen decreases), but may also find it more costly to achieve a given
level of performance (Xcc increases), with both effects tending to reduce EP∗ at
older plants.3

In this model, spatial correlation could arise for a variety of reasons. First,
the factors that drive environmental performance could themselves be spatially
correlated. These correlations arise automatically in the construction of many
of our explanatory variables: plants in the same neighborhood are necessarily
surrounded by the same demographic factors; nearby plants are usually reg-
ulated by the same agency. Spatial correlation in other explanatory variables
may be more subtle, with plant characteristics such as age and size exhibiting
spatial correlation when similar plants tend to cluster together due to agglom-
eration effects as found in Henderson (1999). Some unmeasured factors that
influence performance may also have a spatial component, such as an especially
active neighborhood environmental group, which could drive similarities in the
residual (unexplained) performance at neighboring plants.

Spatial effects could also occur in regulatory pressures. Some states might
have more aggressive regulatory agencies, doing more inspections and impos-
ing more penalties throughout the state (Gray and Deily, 1996). At a more local
level, the locations of regulatory offices may influence regulatory intensity if fa-
cilities near the office are more frequently inspected. Spatially defined enforce-
ment variables may help us test broader regulatory issues, such as decomposing
the impact of inspections into general and specific deterrence. We would expect
that plants would be more attentive to inspections at nearby plants (rather
than distant ones) when forming predictions about the local stringency of en-
forcement. This can be tested by comparing the impacts of local- and state-level
enforcement activity. The fact that most regulatory activity is done by state reg-
ulatory agencies also provides a spatially defined consistency check: inspections
at nearby plants in other states should be irrelevant.

Finally, a purely spatial component of the model can arise if the environ-
mental performance at one plant is directly related to the performance at nearby
plants. For example, one plant with especially good performance could have
a demonstration effect (showing that good performance is possible), putting
more pressure on neighboring plants to perform well. Regulators might also
have preferences related to the spatial pattern of environmental performance,
though the sign of this effect is unclear — a desire to avoid hot spots would lead
to negative spatial correlations while a desire to push all polluters away from
politically active areas towards less favored areas could lead to positive corre-
lations (the latter effect being at the heart of the literature on environmental
justice).

3Note that this is based on measuring EP in terms of emissions performance. If we measure
EP in terms of regulatory compliance, the less stringent regulations due to grandfathering could
make older plants more likely to be in compliance than younger ones, even if the older plants’
emissions performance is worse.
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3. DATA DESCRIPTION

Our analysis uses cross-sectional data on environmental performance in
1997 for 521 manufacturing plants, located within 50 miles of the centers of
three US cities. These cities are all near state borders, providing us with many
adjacent plants, some in different states, allowing us to test for differences in
regulatory impacts and spatial correlations across jurisdictional boundaries.
The cities (and states) involved are St. Louis (Missouri and Illinois), Cincinnati
(Ohio, Kentucky, and Indiana), and Charlotte (North and South Carolina). We
gathered data for all plants located within 50 miles of any of the cities from EPA
databases. Plant location information (latitude and longitude) came from EPA’s
Envirofacts database, taken from the Permit Compliance System and the Toxic
Release Inventory modules. The final sample of 521 plants came from a merger
of plant-level Census microdata and EPA data that required plants to have both
Census and EPA data, including air pollution compliance information for 1997.
We use two sub-samples of the 521 plants for further analyses: 299 of these
plants have data on releases of toxic air pollutants, while 102 of these plants
have air pollution emissions data for conventional pollutants, particulates and
sulfur dioxide.4

Our research was carried out at the Census Bureau’s Boston Research
Data Center, using confidential plant-level databases developed by the Cen-
sus’s Center for Economic Studies. The primary Census data source is the
Longitudinal Research Database (LRD), which contains information on indi-
vidual manufacturing plants from the Census of Manufactures and Annual
Survey of Manufacturers [for a more detailed description of the LRD data,
see McGuckin and Pascoe (1988)]. From the LRD we extracted information
for 1997, originally collected in the 1997 Census of Manufactures. We use the
plant’s total value of shipments (TVS) as a direct measure of the plant’s size,
deflated and in log form (SIZE), as well as to scale many of the other variables
in this study including the emissions-based dependent variables. Our control
for plant age (AGE) is the plant’s age in 1997 (1997 — year of birth).5 We
control for the plant’s efficiency using labor productivity (LPROD) measured as
real output per employee. Finally a dummy variable (SINGLE) identifies plants
which are owned by single-plant firms (firms which own no other manufacturing
plants).

In addition to these Census variables taken directly from the LRD, we
use the Census Bureau’s annual Pollution Abatement Costs and Expendi-
tures (PACE) survey. The PACE survey data include annual plant-level pol-
lution abatement operating cost data from 1979 to 1994. Since the survey was
not carried out in 1997, we use the plant’s abatement operating costs from
1991 to 1994, and divide this by the plant’s shipments in those years to get a

4The scope of the sample we created for this project was limited by the considerable effort
required to gather, merge, and clean the multiple EPA and Census datasets needed for the analysis.

5We would like to thank John Haltiwanger for providing the plant age information, which
was calculated based on Census data.
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measure of the pollution abatement expenditure intensity at the plant, PAOC,
as a percentage of total costs.6

Our regulatory measures come from EPA databases. From the Integrated
Data for Enforcement Analysis (IDEA) database we obtain a quarterly his-
tory of the plant’s air pollution compliance status. Our compliance measure,
COMPLY, is a dummy variable, indicating whether the plant was in compli-
ance throughout the year (if a plant was out of compliance in any quarter,
COMPLY was set to zero).7 To measure air pollution enforcement activity, we
use information from the Envirofacts database to construct INSPECT, the to-
tal number of “inspection-type” actions (e.g., inspections, emissions monitoring,
stack tests) directed towards this plant during the 1993–1995 period. We create
INSPNB by summing INSPECT over all manufacturing plants within 10 miles,
and INSPNBOUT as the part of INSPNB contributed by plants located in other
states. For a state-level measure of overall regulatory activity, STACT, we cal-
culate the average number of regulatory actions in 1997 per plant in the entire
state.

We obtain data on air pollution emissions from EPA’s 1996 Emissions In-
ventory database (the closest available year to 1997, since the Inventory is done
on a three-year cycle). The Emissions Inventory database provides information
on the tons of emissions per year for criteria air pollutants, of which we con-
sider particulates under 2.5 microns (PM2.5) and sulfur dioxide (SO2).8 These
variables have been scaled by the plant’s total value of shipments in 1997, so
they represent pollution intensity (tons of pollution per million dollars of ship-
ments). The EPA’s 1997 Toxic Release Inventory (TRI) provides information on
releases of toxic pollutants into the air (AIRTOX) for all manufacturing facili-
ties with sufficiently large use and/or emissions of toxic substances, which we
also express in intensity terms.

We use demographic information at the block group level from the 1990
Census of Population (as compiled by Geolytics, Inc., in their CensusCD data)
to measure the characteristics of the population near each plant (taking all block
groups with centroids within 10 miles of the plant as the relevant population).
The health of some people, such as the old and the very young, is more sensitive
to air pollution, which should lead a “socially optimizing” regulator to put more
pressure on nearby plants to improve their environmental performance. We
measure these groups by ELDERS, the fraction of the population 65 or older,
and KIDS, the fraction of the population under 6. For “Environmental Justice”
reasons we might expect plants located in poor and minority neighborhoods to

6We imputed PAOC based on published four-digit industry data for those plants which were
not in the PACE survey.

7There are several different codes for compliance status in the EPA data, but only one or two
of the noncompliance codes are at all frequent, so it was not practical to construct a multinomial
measure of compliance. We follow EPA’s categorization of which codes refer to noncompliance.

8We also analyzed emissions of nitrogen oxides, finding results similar to those for sulfur
dioxide.
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face less pressure to improve environmental performance.9 We measure this
with POOR, the fraction of the population living below the poverty line, and
MINORITY, the fraction of the population that is nonwhite.

We use information at the county level to characterize the political climate
surrounding the plant. TURNOUT is the fraction of registered voters in the
county who voted in the 1992 Presidential election. DEMOCRAT is the frac-
tion of voters in the county voting for the Democratic presidential candidate
in 1992. ENVSPEND is the percentage of the budgets of all local governments
within the county that is spent on environmental amenities such as parks and
recreation. All three of these variables are expected to raise a plant’s environ-
mental performance, since they are associated with politically active, liberal,
and pro-environmental populations being around the plant.

Finally, we calculate whether a plant is within 10 miles of a state border,
represented with a dummy variable BORDER. Regulators might feel less po-
litical pressure to strictly regulate a plant when some of the negative impact
from its pollution is affecting residents of another state. Previous research by
Gray and Shadbegian (2004) finds evidence of a border effect — plants located
near state borders emit more air pollution.

4. SPATIAL ECONOMETRIC METHODS

Based on the earlier discussion (and Figure 1), we expect a plant’s environ-
mental performance to depend on a set of factors that shift the plant’s marginal
compliance cost and expected penalty

EP∗
i = � + � ∗ Xcci + � ∗ Xpeni + ei(3)

The coefficients on the Xcc variables are expected to be negative, while those
on the Xpen variables should be positive, noting the earlier caveat that some
factors (e.g., plant age) could shift both curves.

As described in Anselin (1988), spatial econometrics incorporates infor-
mation about the spatial orientation of data points into traditional economic
models. Spatial dependence can arise in a model in two ways: spatial depen-
dence of the error terms and structural spatial dependencies of the depen-
dent variable (these two types are sometimes called spatial error models and
spatial lag models, respectively). The former effect can occur when spatially
correlated explanatory variables are omitted from the model. If these omitted
variables are unrelated to the variables included in the model, OLS will yield
unbiased yet inefficient estimates, since it ignores the correlation of the error
terms. We can correct for spatial error effects by modifying the error term from

9According to the Office of Environmental Justice at EPA, environmental justice exists when
“no group of people, including racial, ethnic, or socioeconomic group, . . . bear[s] a disproportion-
ate share of the negative environmental consequences resulting from industrial, municipal, and
commercial operations.”
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Equation (3)

ei = � ∗ W ∗ ei + ui(4)

W in Equation (4) is a weighting matrix that puts more weight on nearby
observations, possibly also limited to similar observations (in our case, plants
in the same state and/or industry). W ∗ ei is therefore a spatially lagged error
term, � is the autoregressive coefficient, and we assume u ∼ N (0, �2).

Structural spatial dependencies arise when the environmental perfor-
mance of the plant is directly dependent on the performance of nearby plants,
based on the behavior of plants or regulators as described above (demonstration
effects for plants, hot spots, or environmental justice effects for regulators). We
can account for structural spatial dependencies by augmenting Equation (3) as
follows

EP∗
i = � + � ∗ W ∗ EP∗

i + � ∗ Xcci + � ∗ Xpeni + ei(5)

Here W ∗ EP∗
i is a spatially lagged dependent variable, � is the autoregressive

coefficient, and we assume e ∼ N (0, �2). Note that structural spatial depen-
dencies cause more problems than do spatially dependent errors: omitting the
spatially lagged dependent variable can lead OLS to produce biased estimates
and invalid statistical tests, through an omitted variable bias.

We begin our modeling by estimating non-spatial models, along the lines
of Equation (3), to provide a baseline set of results for comparison with our spa-
tial models. We then test for spatial correlation in the explanatory variables.
Next we test for spatial correlation in the environmental performance variables
and the residuals from the non-spatial models to see whether omitted factors
might be driving spatial effects in performance, or whether the spatial effects
are primarily due to structural spatial dependencies. Based on these results we
decide whether to estimate a model with spatially correlated errors, as in Equa-
tion (4), or with structural spatial dependencies, as in Equation (5). Finally, we
compare our spatial results with the results from the non-spatial models, to see
how much they affect the estimated coefficients. We use the spatial economet-
rics library in the Econometrics Toolbox for MATLAB, as described in Lesage
(1999) to perform all of our spatial econometric analyses.10

5. RESULTS

Table 1 presents summary statistics for the variables used in our analysis.
Note that we actually have three samples of data, depending on the dependent
variable in the analysis: 102 plants for emissions of conventional air pollutants,
299 plants for releases of toxic air pollutants, and all 521 plants for compliance
with air pollution regulations. The explanatory variables are presented only
for the full sample, but means for the sub-samples with emissions data11 differ

10The toolbox is available at http://www.spatial-econometrics.com.
11Complete results available from authors.
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TABLE 1: Descriptive Statistics (calculated for 521 observations in the
compliance sample, except as noted)

Variable Mean (s.d) Description

Dependent variables
COMPLY 0.891 (0.312) Dummy variable = 1 if a plant is in compliance with

air regulations in 1997
AIRTOX 1.238 (4.990) (N = 299) TRI air emissions/shipments

(tons/$000,000) in 1997
PM2.5 0.360 (0.718) (N = 102) Particulates emissions under 2.5 microns/

shipments (tons/$000,000) in 1996
SO2 3.613 (17.933) (N = 102) Sulfur dioxide emissions/shipments

(tons/$000,000) in 1996
Inspection activity

INSPECT 0.484 (0.742) Number of plant inspections (1993–1995)
STACT 0.575 (0.222) Average number of regulatory actions per plant in

state (1997)
INSPNB 18.960 (18.056) Total number of 1993–1995 inspections at all

manufacturing plants within 10 miles
INSPNBOUT 2.019 (6.637) Total number of 1993–1995 inspections at all

manufacturing plants located within 10 miles
of the plant, but located in a neighboring state

Plant characteristics
SIZE 10.223 (1.520) Log of real shipments in 1997
AGE 40.545 (18.536) Age of the plant = 1997 – year plant was opened
LPROD 0.297 (0.386) Log of real shipments/employment in 1997
PAOC 0.874 (1.388) Pollution abatement operating costs/shipments

(1991–1994 average)
DIRTYSIC 0.361 (0.481) Dummy variable = 1 if a plant is in SIC 26, 28, 29,

33, or 34
Demographic variables

POOR 10.894 (3.941) Percentage of population within 10 miles living below
the poverty line in 1990

ELDERS 11.882 (2.115) Percentage of population within 10 miles 65 or older
in 1990

MINORITY 18.622 (11.832) Percentage of population within 10 miles nonwhite
in 1990

KIDS 8.629 (0.730) Percentage of population within 10 miles under the
age of 6 in 1990

BORDER 0.390 (0.488) Dummy variable = 1 if a plant is within 10 miles of
a state border

ENVSPEND 1.947 (2.766) Share of county local government spending on
environmental amenities in 1992

DEMOCRAT 0.401 (0.107) Fraction in the county voting for the Democratic
candidate in 1992

TURNOUT 0.549 (0.069) Fraction of registered voters in county voting in 1992
Presidential election
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little from those calculated for the full sample — plants with emissions data
are somewhat less likely to be in compliance with air regulations and have a
history of receiving slightly more air inspections, although neither sample of
plants is getting many inspections, with only 48 percent of the plants in the full
sample receiving any air inspections during the 1993–1995 period.

We begin our analysis by examining the determinants of environmental
performance without using spatial econometrics, as in Equation (3). Table 2
presents the determinants of compliance, using a Probit model due to the binary
nature of the compliance variable. Most of the significant results are for plant
characteristics. Plants that are larger, plants in dirty industries, plants with
higher pollution abatement spending, and plants owned by single-plant firms
are all significantly less likely to be in compliance.12 The effects of plant age
and productivity are not significant, though age has the expected sign (younger
plants are more often in compliance). The demographics of the surrounding pop-
ulation show some of the expected effects, yet these effects are mostly insignifi-
cant: plants in neighborhoods with more elderly people or more young children
have better performance, while plants in poor neighborhoods (and non-minority
neighborhoods) have worse performance. These demographic results are simi-
lar to those in Gray and Shadbegian (2004), which also found minority effects
contrary to those anticipated by environmental justice concerns. The political
variables are also insignificant, although their signs are consistent across the
models: plants located in counties which spend more on environmental activi-
ties, counties with higher voter turnout, and (surprisingly) counties with more
Republican voting or near state borders, have higher compliance rates.

Model 2b contains two measures of regulatory activity, INSPECT and
STACT. Both measures have the expected positive impact on compliance, indi-
cating the presence of both specific (INSPECT) and general (STACT) deterrence
effects, but neither is significant. Measures of general deterrence with more
precise spatial definition, INSPNB and INSPNBOUT, are included in Model
2c, with the expected signs (and borderline significance). Inspections at nearby
plants help increase compliance, but only if those plants are in the same state.
We discuss these regulatory effects in more detail later, in the context of our
spatial econometric models.

Table 3 presents the results for emissions of air pollutants, both toxic (AIR-
TOX) and conventional (PM2.5, SO2). As it happens, we do not find any evidence
that air pollution enforcement reduces emissions — the only significant effect
of regulatory activity is higher releases when nearby plants have been getting
air pollution inspections (an unexpected result). The only explanatory variable
with consistently strong effects is plant size, where larger plants show smaller
emissions — but since emissions are calculated relative to plant size, and only
plants with relatively large emissions are included in the EPA data, the SIZE

12The numerical coefficients for SINGLE could not be disclosed for confidentiality reasons.
SINGLE is not included in our later analyses of emissions and toxic releases because those analyses
contain very few single-plant firms.
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TABLE 2: Non-Spatial Models of Compliance (t-statistics in parentheses)

2a 2b 2c
DEPVAR COMPLY COMPLY COMPLY

INSPECT 0.153 0.174
(1.31) (1.47)

INSPNB 0.013
(1.65)

INSPNBOUT −0.023
(−1.49)

STACT 0.517
(0.82)

LPROD −0.014 0.009 −0.009
(−0.06) (0.04) (−0.04)

AGE −0.005 −0.005 −0.006
(−1.13) (−1.14) (−1.38)

SIZE −0.196 −0.203 −0.199
(−2.85) (−2.87) (−2.81)

SINGLE – – – – – –

DIRTYSIC −0.437 −0.414 −0.447
(−2.37) (−2.20) (−2.39)

PAOC −0.129 −0.130 −0.123
(−2.49) (−2.47) (−2.26)

POOR −0.043 −0.025 −0.023
(−1.16) (−0.61) (−0.61)

MINORITY 0.019 0.015 0.015
(1.83) (1.27) (1.31)

ELDERS 0.113 0.118 0.113
(1.82) (1.88) (1.82)

KIDS 0.052 0.104 0.112
(0.37) (0.68) (0.78)

BORDER 0.067 0.066 0.047
(0.33) (0.33) (0.23)

ENVSPEND 0.069 0.068 0.048
(0.88) (0.86) (0.68)

DEMOCRAT −0.569 −0.602 −1.628
(−0.49) (−0.51) (−1.26)

TURNOUT 1.088 1.922 1.487
(0.78) (1.16) (1.01)

R2 0.130 0.138 0.146
Log-L −156.47 −155.12 −153.69

Note: Estimates are based on observations of 521 plants in 1997, using a Probit analysis.
Exact coefficients for SINGLE cannot be reported, due to Census disclosure rules; the table shows
the sign and (when doubled) statistical significance at the 5 percent level.
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TABLE 3: Non-Spatial Models of Air Emissions (t-Statistics in Parentheses)

3a 3b 3c 3d 3e 3f
DEPVAR AIRTOX AIRTOX PM2.5 PM2.5 SO2 SO2

INSPECT 0.128 0.098 0.096 0.082 5.772 5.897
(0.36) (0.28) (0.96) (0.80) (2.26) (2.28)

INSPNB 0.061 −0.001 0.082
(2.40) (−0.10) (0.32)

INSPNBOUT −0.015 0.004 −0.149
(−0.32) (0.26) (−0.36)

STACT −1.274 −0.983 0.450
(−0.55) (−1.24) (0.02)

AGE 0.010 0.006 0.011 0.011 0.060 0.057
(0.70) (0.39) (2.84) (2.86) (0.64) (0.58)

LPROD 1.010 1.000 0.021 0.073 1.031 1.084
(1.29) (1.28) (0.09) (0.33) (0.18) (0.19)

SIZE −1.235 −1.181 −0.092 −0.099 −3.943 −3.924
(−5.06) (−4.88) (−1.34) (−1.43) (−2.28) (−2.26)

DIRTYSIC −1.225 −1.213 −0.117 −0.048 −0.925 −0.956
(−1.87) (−1.88) (−0.56) (−0.24) (−0.17) (−0.18)

PAOC −0.170 −0.129 0.016 0.016 −0.661 −0.670
(−0.83) (−0.63) (0.17) (0.17) (−0.28) (−0.28)

POOR −0.086 0.002 −0.032 −0.026 0.203 0.210
(−0.58) (0.01) (−0.79) (−0.64) (0.20) (0.20)

MINORITY 0.044 −0.001 0.011 0.008 0.011 0.033
(1.11) (−0.04) (1.11) (0.71) (0.04) (0.12)

ELDERS 0.101 0.061 −0.007 −0.007 1.009 1.129
(0.47) (0.29) (−0.11) (−0.101) (0.60) (0.66)

KIDS −0.235 0.058 −0.023 0.052 1.532 2.015
(−0.42) (0.11) (−0.11) (0.25) (0.29) (0.38)

BORDER 1.105 0.807 −0.245 −0.169 −1.331 −1.123
(1.46) (1.06) (−1.08) (−0.74) (−0.23) (−0.19)

ENVSPEND −0.094 −0.119 −0.016 −0.001 −0.255 −0.288
(−1.00) (−1.26) (−0.60) (−0.04) (−0.37) (−0.45)

DEMOCRAT −5.067 −8.926 0.455 1.908 2.681 3.889
(−1.29) (−2.11) (0.25) (1.29) (0.06) (0.10)

TURNOUT 4.800 5.624 −2.005 −1.225 −15.699 −10.381
(0.86) (1.25) (−1.01) (−0.61) (−0.31) (−0.20)

R2 0.156 0.158 0.218 0.204 0.187 0.189

Note: Estimates are based on observations of 299 plants in 1997 for AIRTOX and 102 plants
in 1996 for PM2.5 and SO2, using an ordinary least squares (OLS) analysis.

coefficients can hardly be treated as evidence for economies of scale in control-
ling emissions.

We now turn to spatially explicit analysis of the data. In Table 4 we exam-
ine the degree of spatial correlation in our data, using Moran’s I test and three
spatial weighting matrices. The first weighting matrix (INV) weights data from
all the other plants near the same city by the inverse of the distance to those
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plants. The second weighting matrix (INV ST) allows us to test for the impor-
tance of borders by using the same inverse distance weights but applying a zero
weight to plants located in a different state. We also examine a third measure
(INV ST SIC), which further restricts the weights to plants in both the same
state and the same two-digit SIC industry (limited to the compliance models,
where the sample size is sufficiently large).

Panel A shows the spatial correlations for our dependent variables, the
measures of environmental performance. The only one that shows strong struc-
tural dependencies is compliance. A plant’s compliance status tends to be pos-
itively correlated with the compliance status of nearby plants. The weighting
matrix matters for this comparison — the spatial effects are much larger when
we restrict our attention to plants in the same state (INV ST), but are small
and insignificant when we include plants in neighboring states. Restricting
the weight matrix to only plants in the same industry and state (INV ST SIC)
further increases the magnitude of the spatial correlation for compliance. Nei-
ther toxic nor conventional pollutant emissions show any significant evidence
of spatial correlation; sulfur dioxide emissions show a (surprisingly) negative
spatial correlation, but this is small and not significant.

Panel B shows the spatial correlations for the explanatory variables, all of
which except INSPECT show positive spatial correlations.13 Note that using
a different spatial weighting matrix makes little difference in the estimated
spatial correlation for any of the explanatory variables. On the whole, these
results support the existence of agglomeration effects. Nearby plants tend to
be similar plants, and this would be expected to generate spatial relationships
in the environmental performance measures (though we only find such effects
for compliance).

Panel C of Table 4 shows the spatial correlations for the residuals from
the non-spatial models estimated earlier. Given the results in Panel A, it is not
surprising that the residuals from the models of air pollutant emissions show
uniformly insignificant spatial correlation. On the other hand, the compliance
residuals continue to show positive spatial effects for those weighting matrices
(INV ST and INV ST SIC) where the earlier spatial effects were found. However,
these residuals show smaller spatial correlations than the original compliance
measures. These reductions are larger for model 2c, which accounts for local
general deterrence with INSPNB and INSPNBOUT, than for model 2b, which
uses the state-level measure of general deterrence, STACT. This suggests that
part of the spatial correlation in COMPLY is being driven by spatially correlated
explanatory variables — using the INV ST weighting matrix, 35 percent of the
spatial effects for compliance are explained by model 2b and an additional 18
percent (for a total of 53 percent) are explained by model 2c.14

13We do not calculate spatial correlations for the demographic (neighborhood-based) or po-
litical (county-based) variables, since they are spatially correlated by construction.

14Model 2b = (0.057–0.037)/0.057 = 35 percent; Model 2c = (0.057–0.027)/0.057 = 53 percent.
For INVST SIC the reductions are somewhat smaller: 27 percent and 41 percent, respectively.
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TABLE 4: Moran’s I Tests for Spatial Correlations (p-Values in
Parentheses)

A: Dependent variables
VARIABLE #OBS WEIGHT = INV INVST INVST SIC

COMPLY 521 0.015 (0.109) 0.057 (0.000) 0.079 (0.013)
AIRTOX 299 0.005 (0.363) 0.011 (0.335)
PM2.5 102 0.003 (0.380) 0.006 (0.375)
SO2 102 −0.017 (0.394) −0.017 (0.395)

B: Explanatory variables
INSPECT 521 0.007 (0.280) 0.009 (0.288) 0.012 (0.361)
LPROD 521 0.047 (0.000) 0.057 (0.000) 0.186 (0.000)
AGE 521 0.115 (0.000) 0.127 (0.000) 0.134 (0.000)
PAOC 521 0.045 (0.000) 0.045 (0.001) 0.152 (0.000)
SIZE 521 0.053 (0.000) 0.059 (0.000) 0.299 (0.000)

C: Residuals from Non-Spatial Models
COMPLY(2b) 521 −0.003 (0.395) 0.037 (0.009) 0.058 (0.063)
COMPLY (2c) 521 −0.004 (0.392) 0.027 (0.047) 0.047 (0.114)
AIRTOX (3b) 299 −0.010 (0.360) −0.001 (0.230)
PM2.5 (3d) 102 −0.028 (0.287) −0.033 (0.311)
SO2 (3f) 102 −0.035 (0.333) −0.037 (0.335)

Notes: The calculations of the Moran’s I test are done using three different spatial weighting
matrices: INV = (1/distance), INVST = (1/distance) restricted to plants in the same state, and
INVST SIC = (1/distance) restricted to plants in the same state and in the same two-digit SIC
industry. The model numbers for residuals in panel C refer to the models estimated in Tables 2
and 3.

Having found evidence of spatial correlations, at least for compliance, we
now move to spatial econometric techniques that can explicitly control for these
spatial effects. We are interested in the significance of the spatial terms, as well
as any impact that their inclusion has on the estimated coefficients for other ex-
planatory variables. As noted earlier, we could control for spatial correlation in
the error terms (Equation 4) or for structural spatial dependencies (Equation 5).
To choose between these methods, we return to the results in Table 4, compar-
ing the magnitudes of the spatial correlation in the original environmental
performance variables and the spatial correlation in the residuals from the
non-spatial models. The correlations for the original compliance measure are
substantially larger than those for the residuals, indicating that the structural
spatial dependencies model is more appropriate [see Anselin and Rey (1991)].
Thus we choose to estimate Equation (5), including a spatially lagged dependent
variable in the model.

Table 5 shows the results for our spatial models of compliance, using three
variations on the spatial weighting matrix. We find a small positive impact of
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TABLE 5: Spatially-Lagged Models of Compliance (p-Values in Parentheses)

5a 5b 5c 5d 5e 5f
DEPVAR COMPLY COMPLY COMPLY COMPLY COMPLY COMPLY
WEIGHT INV INV INVST INVST INVST SIC INVST SIC

RHO 0.010 0.008 0.015 0.009 −0.012 −0.019
(0.092) (0.192) (0.033) (0.157) (0.303) (0.182)

INSPECT 0.178 0.195 0.189 0.190 0.172 0.183
(0.065) (0.039) (0.051) (0.052) (0.077) (0.068)

INSPNB 0.007 0.005 0.015
(0.168) (0.301) (0.022)

INSPNBOUT −0.021 −0.014 −0.024
(0.078) (0.175) (0.082)

STACT 0.170 −0.118 0.480
(0.398) (0.422) (0.246)

LPROD −0.001 0.032 0.030 0.015 0.021 0.033
(0.496) (0.441) (0.470) (0.500) (0.458) (0.467)

AGE −0.005 −0.006 −0.005 −0.006 −0.005 −0.007
(0.131) (0.093) (0.124) (0.094) (0.125) (0.070)

SIZE −0.205 −0.210 −0.212 −0.199 −0.224 −0.218
(0.000) (0.002) (0.002) (0.003) (0.000) (0.005)

SINGLE – – – – – – – – – – – –

DIRTYSIC −0.451 −0.431 −0.473 −0.442 −0.448 −0.470
(0.007) (0.004) (0.011) (0.006) (0.012) (0.005)

PAOC −0.135 −0.131 −0.131 −0.119 −0.133 −0.130
(0.003) (0.012) (0.003) (0.020) (0.009) (0.013)

POOR −0.020 −0.012 −0.020 −0.009 −0.024 −0.022
(0.286) (0.370) (0.307) (0.386) (0.288) (0.278)

MINORITY 0.012 0.014 0.013 0.012 0.013 0.015
(0.135) (0.107) (0.119) (0.152) (0.133) (0.085)

ELDERS 0.111 0.118 0.109 0.114 0.120 0.120
(0.040) (0.040) (0.027) (0.025) (0.039) (0.042)

KIDS 0.104 0.132 0.096 0.141 0.098 0.115
(0.252) (0.172) (0.257) (0.141) (0.248) (0.216)

BORDER 0.087 0.064 0.061 0.052 0.084 0.064
(0.358) (0.379) (0.384) (0.399) (0.356) (0.379)

ENVSPEND 0.078 0.065 0.062 0.082 0.135 0.075
(0.106) (0.113) (0.114) (0.087) (0.064) (0.131)

DEMOCRAT −1.291 −1.760 −1.167 −1.538 −0.675 −1.901
(0.135) (0.081) (0.165) (0.089) (0.304) (0.074)

TURNOUT 1.888 1.672 1.676 1.556 1.680 1.346
(0.119) (0.122) (0.157) (0.140) (0.191) (0.169)

Note: These estimates are based on observations of 521 plants in 1997, using a Bayesian
spatial Probit analysis, as described in LeSage (2000). RHO is the estimated autoregressive
coefficient, as in Equation (5). The analyses are done using three different spatial weighting
matrices: INV = (1/distance), INVST = (1/distance) restricted to plants in the same state, and
INVST SIC = (1/distance) restricted to plants in the same state and the same two-digit SIC
industry. Exact coefficients for SINGLE cannot be reported, due to Census disclosure rules; the
table shows the sign and (when doubled) statistical significance at the 5 percent level.
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RHO, the spatially lagged compliance of nearby plants, significant in models
(5a and 5b) using the broader spatial weights (INV and INV ST) and the less
precise measure of general deterrence (STACT), but insignificant and occasion-
ally negative in the other models. This is consistent with the results of Table 4,
where the observed variables from a non-spatial model explained much of the
spatial correlation in compliance.

Applying spatial econometric techniques does not greatly affect the co-
efficients on the other variables in the model, as can be seen by comparing
coefficients in Table 5 to those in Table 2. The significance levels on other ex-
planatory variables in the spatial model are similar to, or even a bit larger than,
those found in the non-spatial model. This is most noticeable for the regulatory
enforcement measures. The specific deterrence effect (INSPECT) is at least
borderline significant in all models. The INSPNB and INSPNBOUT measures
of general deterrence both gain significance with the INV ST SIC weight ma-
trix. Some of the plant characteristics also gain in significance. On the whole,
including the spatially lagged dependent variable in the analysis strengthens
rather than weakens the importance of the other explanatory variables in the
model.

Consider the regulatory variables in more detail, focusing on model
5f, which includes the most spatially detailed regulatory measures. First,
which is more important, specific deterrence (INSPECT) or general deter-
rence (INSPNB)? The INSPECT coefficient is roughly ten times larger than
that of INSPNB (0.183 versus 0.015), but the mean of INSPECT is only
one-fortieth that of INSPNB (0.48 versus 18.96). This suggests that the
overall effect of regulation through general deterrence (mean × coefficient
of INSPNB) could be at least as important as its effect through specific
deterrence, similar to results for OSHA enforcement in Scholz and Gray (1990).

Turning to the importance of jurisdictional boundaries for regulatory anal-
yses, the negative sign on INSPNBOUT shows that inspections on plants in
neighboring states are not as effective at improving compliance. In fact, the
negative coefficient on INSPNBOUT is larger in magnitude than the positive
one on INSPNB, so increased inspections at plants in neighboring states would
be predicted to reduce a plant’s compliance, although this effect is not statisti-
cally significant. One possible explanation is that state regulators, concerned
about other trouble spots in their own state, do not bother putting much effort
into areas near “clean” borders (where neighboring regulators are pressuring
the plants on their side of the border to reduce pollution) — a sort of cross-border
substitution of regulatory intensity.

We carry out similar analyses for the toxic release and air emissions mea-
sures in Table 6. The RHO term shows insignificant effects for spatially lagged
performance, consistent with the spatial correlation results in Table 4. As we
found earlier for the non-spatial models in Table 3, the other explanatory vari-
ables are generally insignificant, and we see a similar pattern of signs between
the spatial and non-spatial models of emissions.
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TABLE 6: Spatially-Lagged Models of Air Emissions (t-Statistics in
Parentheses)

DEPVAR 6a 6b 6c 6d 6e 6f
WEIGHT AIRTOX AIRTOX PM2.5 PM2.5 SO2 SO2

INV INVST INV INVST INV INVST

RHO −0.026 −0.029 −0.029 −0.032 −0.033 −0.035
(−1.509) (−1.674) (−0.646) (−0.714) (−0.693) (−0.735)

INSPECT 0.210 0.219 0.081 0.081 5.896 5.899
(0.306) (0.320) (0.879) (0.882) (2.551) (2.553)

INSPNB 0.149 0.156 0.000 0.000 0.081 0.083
(2.853) (2.934) (0.013) (0.041) (0.352) (0.358)

INSPNBOUT −0.030 −0.050 0.003 0.003 −0.143 −0.144
(−0.325) (−0.544) (0.223) (0.204) (−0.383) (−0.387)

LPROD 2.139 2.113 0.073 0.072 1.013 0.995
(1.428) (1.411) (0.365) (0.360) (0.200) (0.197)

AGE 0.013 0.014 0.011 0.011 0.057 0.057
(0.463) (0.473) (3.192) (3.191) (0.659) (0.660)

SIZE −2.346 −2.352 −0.099 −0.099 −3.921 −3.920
(−5.035) (−5.053) (−1.609) (−1.611) (−2.525) (−2.525)

DIRTYSIC −2.521 −2.522 −0.043 −0.043 −0.854 −0.853
(−2.032) (−2.034) (−0.236) (−0.234) (−0.184) (−0.184)

PAOC −0.269 −0.274 0.014 0.014 −0.707 −0.707
(−0.682) (−0.693) (0.169) (0.168) (−0.330) (−0.330)

POOR −0.047 −0.045 −0.031 −0.031 0.165 0.164
(−0.181) (−0.174) (−0.831) (−0.838) (0.177) (0.176)

MINORITY −0.010 −0.014 0.009 0.009 0.039 0.039
(−0.133) (−0.191) (0.876) (0.880) (0.153) (0.154)

ELDERS 0.128 0.134 −0.003 −0.002 1.229 1.240
(0.315) (0.328) (−0.047) (−0.034) (0.800) (0.807)

KIDS 0.032 0.054 0.051 0.050 2.083 2.087
(0.032) (0.055) (0.270) (0.268) (0.440) (0.440)

BORDER 1.523 1.462 −0.161 −0.161 −1.100 −1.100
(1.039) (0.998) (−0.782) (−0.780) (−0.213) (−0.213)

ENVSPEND −0.239 −0.239 −0.002 −0.002 −0.296 −0.300
(−1.318) (−1.320) (−0.072) (−0.074) (−0.514) (−0.520)

DEMOCRAT −16.890 −16.772 1.954 1.948 3.434 3.255
(−2.063) (−2.049) (1.473) (1.469) (0.102) (0.097)

TURNOUT 10.075 10.177 −1.115 −1.056 −11.021 −10.565
(1.158) (1.171) (−0.617) (−0.582) (−0.243) (−0.233)

R2 0.177 0.179 0.203 0.203 0.188 0.188
Log-L −969.75 −978.31 −63.276 −63.268 −392.48 −392.40

Note: Estimates are based on observations of 299 plants in 1997 for toxic air pollutants
(AIRTOX, models 6a and 6b), and 102 plants in 1996 for conventional air pollutants (SO2

and PM2.5), using a spatially lagged regression analysis. RHO is the estimated autoregressive
coefficient, as in Equation (5). Two different spatial weighting matrices are considered: INV =
(1/distance) and INVST = (1/distance) restricted to plants in the same state.
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6. CONCLUSIONS

We incorporate a variety of spatial components in our models of plant-
specific environmental performance (measured by air pollution compliance,
conventional air emissions, and toxic releases). We create explanatory vari-
ables based on the plant’s location, test for spatial correlation in environmental
performance and the explanatory variables, and examine whether spatial pat-
terns in the explanatory variables can explain spatial patterns in the depen-
dent variables (performance). We then explicitly model the spatial component
of environmental performance using a structural spatial dependencies model,
incorporating spatially lagged dependent variables. Finally, we compare the
results of spatial and non-spatial models to see how including spatial effects
influences the estimated impact of different explanatory variables.

A large amount of the explanatory power of the compliance models
comes from plant-specific characteristics, with larger, older, more pollution-
abatement-intensive plants, and those in single-plant firms, having lower com-
pliance levels. Some local demographic characteristics matter — having more
elderly or minority residents nearby is associated with somewhat greater com-
pliance rates — but political measures show little impact on compliance. The
effects of inspection activity tend to have the expected signs, but are not al-
ways significant. Having more inspections at the plant, at nearby plants and at
plants in the same state is associated with greater compliance. The comparison
of coefficients and means for the measures of general and specific deterrence
effects suggests that general deterrence is at least as important as specific de-
terrence. Inspections at nearby plants in other states do not seem to increase
compliance, confirming the importance of recognizing borders when modeling
the impact of regulatory activity on compliance.

Our spatial analysis indicates significant positive spatial correlations in
compliance: plants located near each other tend to have similar compliance
rates. In addition, this effect does not cross state borders — only plants in
the same state behave similarly — reinforcing the importance of jurisdictional
boundaries in a federal regulatory system where most of the enforcement ac-
tivity is done by state regulators. The explanatory variables in our models also
show positive spatial correlations: nearby plants are similar in terms of size,
productivity, age, and abatement expenditures, and these effects do carry across
state borders. Spatial patterns in explanatory variables appear to explain a siz-
able fraction of the spatial patterns in compliance, as the residuals from some
compliance models show less than half the spatial correlation of the original
compliance measures. Models which explicitly incorporate spatially lagged com-
pliance status in the estimation find rather small effects, but their inclusion
raises the significance level of some of the other spatially explicit explanatory
variables in the models, including measures of regulatory activity.

Our findings of significant spatial effects for compliance status do not
carry over to our other measures of environmental performance — emissions
of conventional and toxic air pollutants. In fact, few variables we tested had
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significant impacts on either toxic releases or conventional air emissions. This
may be partially due to the smaller samples of plants with toxic release or con-
ventional air emissions data. It may also be due to the heterogeneity of the
plants included in the analysis. Unlike most prior research, we include plants
from all manufacturing industries in our analysis, rather than focusing on a
specific industry. This was necessary to get enough plants close enough together
to do spatial analyses, but the different processes determining pollution inten-
sities for plants in different industries may make it problematic to estimate a
single equation covering all plants. Compliance effects may be less industry-
specific, and hence easier to estimate. Being a binary variable, compliance does
not exhibit as great a variation in range across industries, which may also help
the estimation.

Thus, our overall results indicate a significant, but limited, role for explic-
itly including spatial factors when modeling environmental performance. Our
future research plans include a wider testing of alternative specifications of
the spatial effects, to see how robust our conclusions are to different spatial
weighting matrices and different sets of explanatory variables. We also hope
to expand the analysis to include panel data on both air and water pollution
performance, as well as expanding the dataset to include plants near additional
cities. This will help us provide a richer picture of the spatial correlations in
compliance across plants, and may increase our ability to explain what causes
those correlations.
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